Variant | Gene | Type | COSMIC ID | DNA Change (Coding Nucleotide) | Exon |
---|---|---|---|---|---|
KRAS G12A | KRAS | missense | 2 | ||
KRAS G12V | KRAS | missense | 2 | ||
KRAS G12D | KRAS | missense | 2 | ||
KRAS G12C | KRAS | missense | 2 | ||
KRAS G12S | KRAS | missense | 2 | ||
KRAS G12R | KRAS | missense | 2 | ||
KRAS G13D | KRAS | missense | 2 | ||
KRAS G13C | KRAS | missense | 2 | ||
KRAS G13S | KRAS | missense | 2 | ||
KRAS G13R | KRAS | missense | 2 | ||
KRAS Q61H | KRAS | missense | 3 | ||
KRAS Q61L | KRAS | missense | 3 | ||
KRAS Q61K | KRAS | missense | 3 | ||
KRAS Q61R | KRAS | missense | 3 | ||
KRAS A146T | KRAS | missense | 4 | ||
KRAS A146V | KRAS | missense | 4 | ||
KRAS A146P | KRAS | missense | 4 | ||
KRAS A11V | KRAS | missense | 2 | ||
KRAS codon(s) 12, 13, 61, 117, 146 any | KRAS | any | 2, 2, 3, 4, 4 | ||
KRAS codon(s) 12 any | KRAS | any | 2 | ||
KRAS K117N | KRAS | missense | 4 | ||
KRAS codon(s) 117 any | KRAS | any | 4 | ||
KRAS Q22K | KRAS | missense | 64C>A | 2 | |
KRAS V14I | KRAS | missense | 40G>A | 2 | |
KRAS L19F | KRAS | missense | 57G>C | 2 | |
KRAS copy number gain | KRAS | CNV | |||
KRAS copy number loss | KRAS | CNV | |||
KRAS any mutation | KRAS | any |
KRAS is a well known proto-oncogene that belongs to the small GTPase family and functions as a central mediator of downstream growth factor receptor signaling, with a critical role for cell proliferation and survival. Pathogenic mutations in KRAS typically occur in codons 12-13 of exon 2 and codon 61 of exon 3; however, other, non-canonical, pathogenic mutations in KRAS have also been reported in acute myeoid leukemia. KRAS mutations have been described in approximately 3-15% of acute myeloid leukemia, 8-20% of chronic myelomonocytic leukemia, 14% of juvenile myelomonocytic leukemia, 8% of blastic plasmacytoid dendritic cell neoplasm 4% of patients with myelodysplastic syndrome, 2% of primary myelofibrosis, 12% of B cell acute lymphoblastic leukemia (often associated with MLL rearrangement) and 1-2% of T cell acute lymphoblastic leukemia. Investigation into the targetability of this pathway in leukemia has been attempted in some disease models.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. Such mutations are found in approximately 30% to 50% of metastatic colorectal tumors and are common in other tumor types. Mutations in the KRAS gene may indicate poor prognosis and poor drug response with therapies targeted to EGFR. The absence of a KRAS mutation predicts a greater likelihood of response to EGFR-targeted therapies and improved survival with such treatment. The relevant KRAS mutation is in one of five codons (12 13, 61, 117 or 146). The presence of KRAS mutations in codon 12, 13 or 61 is associated with a high likelihood of resistance to therapies targeting EGFR. In addition, mutations at codons 117 and 146 may also be associated with reduced response to EGFR-targeted therapies. Results should be interpreted in conjunction with other laboratory and clinical findings. Drug resistance: Panitumumab Cetuximab
KRAS belongs to the RAS family of oncogenes. In lung, KRAS mutations are detected in approximately 20% to 25% of adenocarcinoma and less than 10% of squamous cell carcinoma which demonstrate a minor glandular component. KRAS mutations in NSCLC most often occur in codons 12 or 13 and with a lower frequency in codon 61. Mutations in KRAS are usually mutually exclusive with other oncogenic driver aberrations including EGFR, BRAF, HER2 mutations and ALK and ROS1 rearrangements. Contrary to most other oncogenic driver mutations, KRAS is more often found in smokers and is detected at lower frequency in East Asian patient cohorts. The prognostic as well as predictive role of KRAS mutations continues to be studied. Although various attempts inhibiting KRAS have been made, there is no established therapy specific for this large patient subpopulation. Recommend correlation with other clinical and lab findings.
KRAS belongs to the RAS family of oncogenes. KRAS mutations are detected in approximately 20% to 25% of lung adenocarcinoma. Contrary to most other oncogenic driver mutations, KRAS is more often found in smokers and is detected at lower frequency in East Asian patient cohorts. Mutations in KRAS are usually mutually exclusive with other oncogenic driver aberrations including EGFR, BRAF, HER2 mutations and ALK and ROS1 rearrangements. KRAS mutations in NSCLC most often occur in codons 12 or 13 and with a lower frequency in codon 61. The prognostic as well as predictive role of KRAS mutations continues to be studied. Although various attempts inhibiting KRAS have been made, there is no established therapy specific for this large patient subpopulation.
Pancreatic ductal adenocarcinoma (PDAC) is initiated by oncogenic mutant KRAS, which has been shown to drive pancreatic neoplasia. More than 90% of pancreatic ductal adenocarcinoma samples have a KRAS mutation which may have prognostic, and (with ongoing trials assessing the efficacy of novel KRAS inhibitors) possibly therapeutic implications. However, targeting KRAS directly has been difficult in these tumors.
KRAS belongs to the RAS family of oncogenes. KRAS mutations have been described in approximately 3-40% gall bladder adenocarcinomas (more often in East Asia). The prognostic and therapeutic implications of KRAS mutations in gall bladder adenocarcinomas continue to be explored.
KRAS belongs to the RAS family of oncogenes. KRAS mutations are detected in approximately 20% to 25% of lung adenocarcinoma. Contrary to most other oncogenic driver mutations, KRAS is more often found in smokers and is detected at lower frequency in East Asian patient cohorts. Mutations in KRAS are usually mutually exclusive with other oncogenic driver aberrations including EGFR, BRAF, HER2 mutations and ALK and ROS1 rearrangements. KRAS mutations in NSCLC most often occur in codons 12 or 13 and with a lower frequency in codon 61. KRAS Q22K mutation consists of a C to A transversion substituting lysine for glutamine. This KRAS variant, at codon 22, is exceedingly rare in lung cancers, and also only rarely been described in very few other cancers. Mutations at this site have also been reported as germline mutations in Noonan syndrome. The preclinical studies have shown that cell lines expressing the KRAS Q22K mutation possess high in vivo oncogenic potential, higher than that of wild-type KRAS. The prognostic as well as predictive role of this and other KRAS mutations continues to be studied. Although various attempts inhibiting KRAS have been made, there is no established therapy specific for this large patient subpopulation.
RAS mutations (HRAS, NRAS and KRAS) are found in all epithelial thyroid malignancies. The frequency of KRAS mutations in thyroid carcinomas is 2-3%. Overall, RAS mutations are identified in 10--20% of papillary carcinomas (follicular variant), 40--50% of follicular carcinomas and 20--40% of poorly differentiated and anaplastic carcinomas. Of note, RAS point mutations are mutually exclusive with other thyroid mutations such as BRAF, RET/PTC, or TRK rearrangements in papillary thyroid cancers. In follicular carcinomas, RAS mutations are mutually exclusive with PAX8-PPARG rearrangements. RAS mutations have also been associated with more aggressive disease and distant metastasis. The therapeutic implications of RAS mutations in thyroid cancer are unknown at this time.
KRAS mutations have been reported to be present in 16 to 41% of cases of low grade serous carcinoma of the ovary. The prognostic significance of KRAS mutations in ovarian tumors is uncertain; some reports suggest that patients with KRAS G12V may have shorter overall survival than patients without mutation, while other reports suggest that KRAS mutations in some low grade carcinomas of the ovary may be associated with slightly improved prognosis. In-vitro studies showed that cell lines with KRAS G12V mutation are more sensitive to selumetinib (MEK inhibitor) compared to cells with KRAS G12D. The clinical response to MEK inhibitors in patients with these tumors and mutations remains to be elucidated.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. KRAS mutations are frequent in low-grade mucinous tumors of appendiceal origin and pseudomyxoma peritonei (43-100%) where mutations commonly occur in codon 12 or 13, with G12D and G12V being the most common. However, appendiceal adenocarcinoma cases with goblet cell features usually lack KRAS mutations. Mutations in the KRAS gene may indicate poor prognosis and drug response with therapies targeted to EGFR in some settings. However, this should be interpreted in conjunction with other laboratory and clinical findings.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. The frequency of the KRAS gene mutations in intraductal papillary mucinous neoplasms (IPMNs) varies from 38.2% to 100%. There appears to be no significant difference among the incidence of KRAS mutation in the various grades of dysplasia: 87% in low-grade, 90.2% in intermediate grade and 70.7% in high-grade dysplasia. This mutation is considered to be an early event in the neoplastic transformation of IPMNs. KRAS mutations have the highest frequency in the pancreatobiliary subtype (100%) and the lowest frequency in the intestinal subtype (46.2%). Studies demonstrate that KRAS mutations in different tumors may have various biological, prognostic, and possibly therapeutic implications in some settings.
KRAS is a gene that encodes one of the several proteins in the growth factor signaling pathway(s) and is important in the development and progression of a variety of cancers. KRAS can harbor oncogenic mutations that yield a constitutively active protein. The frequency of the KRAS gene mutations in urothelial carcinoma of urinary bladder is very low (3% to 7%), and these mutations occur in all stages and grades. In the context of bladder tumors, mutations in the KRAS gene do not appear to be predictors for recurrence-free, progression-free and disease-specific survival according to some studies.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. KRAS mutations are common in both extrahepatic (40-49%) and intrahepatic (24-27%) cholangiocarcinomas. Mutations in the KRAS gene may indicate poor prognosis and drug response with therapies targeted to EGFR in some settings. Of note, RAS mutations sensitize tumors to MEK inhibitors. However, this should be interpreted in conjunction with other laboratory and clinical findings.
KRAS belongs to the RAS family of oncogenes. KRAS mutations are detected in approximately 10-30% of endometrial tumors, predominantly within codons 12 or 13. KRAS mutations are also identified in endometrial hyperplasias, although at a lower frequency than in carcinomas. According to some studies, the gain of the KRAS function may represent an early event in endometrioid-type tumorigenesis. It has been shown that endometrioid carcinomas with significant mucinous component are more likely to have such mutations. KRAS gene amplification and protein overexpression but not mutation may be associated with aggressive and metastatic endometrial cancer according to some studies.
KRAS belongs to the RAS family of oncogenes. KRAS mutations in codons 12 and 13 were found in 6-7% of prostatic adenocarcinomas. KRAS gene rearrangement has been reported in 3% of metastatic prostate cancer. Prognostic and predictive implications of KRAS gene alterations in prostate cancer need to be fully elucidated.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. KRAS mutations are found in approximately 2-3% of esophageal cancers. In colorectal cancers, mutations in the KRAS gene may indicate poor prognosis and poor drug responses against anti-EGFR therapies. However, prognostic and predictive implications of KRAS mutations in esophageal cancers need to be fully elucidated. Results should be interpreted in conjunction with other laboratory and clinical findings.
KRAS belongs to a family of small GTPases and gain-of-function mutations in the gene yield a constitutively active protein. Such mutations are found in approximately 30% to 50% of metastatic colorectal cancers and are common in other tumor types. The most frequent KRAS mutations occur at codons 12, 13, and 61. Mutations at codons 117 and 146 are less common. Mutations at codon 14 have been detected in adenocarcinomas of the small intestine and colon as well as AML. Germline V14I mutations have been identified in patients with Noonan syndrome. In vitro studies have shown that V14I mutations lead to moderately enhanced MEK1/2 and ERK1/2 phosphorylation suggesting increased downstream signaling, but with slightly less transforming capacity than G12D mutation. Mutations in the KRAS gene may indicate poor prognosis and poor drug response to EGFR-targeted therapies. Results should be interpreted in conjunction with other laboratory and clinical findings.
KRAS belongs to the RAS family of oncogenes and is important in the development and progression of a variety of cancers. KRAS can harbor oncogenic mutations that yield a constitutively active protein. The frequency of KRAS gene mutations in upper tract urothelial carcinoma is low (5%). In the context of urothelial carcinoma of the bladder, mutations in the KRAS gene do not appear to be predictors for recurrence-free, progression-free and disease-specific survival according to some studies. The prognostic and predictive role of KRAS mutations in upper tract urothelial carcinoma needs to be further elucidated.
KRAS mutations are infrequent in gastric carcinomas and have been reported in approximately 6% of cases. Studies have shown no statistically significant difference in survival between KRAS-mutated and KRAS-non-mutated gastric carcinomas. However, one study showed a trend that the presence of a KRAS mutation was associated with better overall survival in gastric carcinoma patients. There is an increased frequency of KRAS mutations in gastric carcinomas with microsatellite instability. In gastric cancer, the predictive ability of KRAS has not been extensively studied, but a small study did not demonstrate an effect on survival in patients treated with an EGFR inhibitor.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. Such mutations are found in approximately 30% to 50% of metastatic colorectal tumors and are common in other tumor types. KRAS L19F has been previously reported in colorectal cancers, but its oncogenic and transforming potential was reported to be significantly lower compared to codons 12 or 13 KRAS mutants. The predictive and prognostic significance of this specific mutation in KRAS needs further elucidation. Results should be interpreted in conjunction with other laboratory and clinical findings.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. Such mutations are found in approximately 30% to 50% of metastatic colorectal tumors and are common in other tumor types. Mutations in the KRAS gene may indicate poor prognosis and poor drug response with therapies targeted to EGFR. The absence of a KRAS mutation predicts a greater likelihood of response to EGFR-targeted therapies and improved survival with such treatment. The relevant KRAS mutation is in one of five codons (12 13, 61, 117 or 146). The presence of KRAS mutations in codon 12, 13 or 61 is associated with a high likelihood of resistance to therapies targeting EGFR. However, preclinical studies have shown that G13D mutant cell lines have intermediate sensitivity to cetuximab and panitumumab. Results should be interpreted in conjunction with other laboratory and clinical findings.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. KRAS mutations have been reported in up to 1.6% of low-grade gliomas and in 1% of glioblastomas. KRAS mutations have not previously reported in ganglioglioma. The predictive and prognostic significance of KRAS mutations in ganglioglioma is unclear and needs to be further studied. Correlation with other clinical and laboratory findings is recommended.
This gene is a known cancer gene.
This gene is a known cancer gene.
KRAS is a gene that encodes one of the several proteins in the epidermal growth factor receptor (EGFR) signaling pathway that is important in the development and progression of cancer. KRAS can harbor oncogenic mutations that yield a constitutively active protein. Such mutations are found in approximately 30% to 60% of small intestine adenocarcinomas and are common in other tumor types. The relevant KRAS mutation is in one of five codons (12 13, 61, 117 or 146). KRAS mutations in small intestine tumors are associated with higher pT classification and more frequent pancreatic invasion. The effect of KRAS mutations on drug therapy has not been well established in the literature, however it has been extensively studied in colorectal adenocarcinoma. Mutations in the KRAS gene may indicate poor prognosis and poor drug response with therapies targeted to EGFR in colon cancer, and the absence of a KRAS mutation predicts a greater likelihood of response to EGFR-targeted therapies and improved survival with such treatment. The presence of KRAS mutations in codon 12, 13 or 61 is associated with a high likelihood of resistance to therapies targeting EGFR in colon cancer. In addition, mutations at codons 117 and 146 may also be associated with reduced response to EGFR-targeted therapies in colon cancer. Results should be interpreted in conjunction with other laboratory and clinical findings.
KRAS, member of the RAS family of small GTPases which functions as an upstream regulator of the MAPK and PI3K pathways, is frequently mutated in a diverse range of cancers including pancreatic, colorectal and lung cancers. More than 90% of pancreatic ductal adenocarcinoma samples have a KRAS mutation which may have prognostic, and (with ongoing trials assessing the efficacy of novel KRAS inhibitors) possibly therapeutic implications. However, targeting KRAS directly has been difficult in these tumors. KRAS mutations are infrequent in gastric carcinomas and have been reported in approximately 6% of cases. The gain of function KRAS G12D mutation is known to be oncogenic.