WCMC logo
PMKB
  • WCMC logoPMKB
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity
  • Login
PIK3CA
Variants
VariantGeneTypeCOSMIC IDDNA Change (Coding Nucleotide)Exon
PIK3CA E542KPIK3CAmissense10
PIK3CA E545KPIK3CAmissense10
PIK3CA H1047RPIK3CAmissense21
PIK3CA codon(s) 542, 545, 1047 anyPIK3CAany10, 10, 21
PIK3CA exon(s) 10, 20, 21 anyPIK3CAany10, 20, 21
PIK3CA UnknownPIK3CAmissense3207+29T>C
PIK3CA copy number gainPIK3CACNV
PIK3CA copy number lossPIK3CACNV
PIK3CA any mutationPIK3CAany
PIK3CA M1043IPIK3CAmissense21
PIK3CA N1044KPIK3CAmissense21
PIK3CA R88QPIK3CAmissense2
PIK3CA P539RPIK3CAmissense10

Interpretations

Sort by
Page
Show

Tier 1
PIK3CA
Variants
PIK3CA E542K
PIK3CA E545K
PIK3CA H1047R
PIK3CA codon(s) 542, 545, 1047 any
PIK3CA exon(s) 10, 20, 21 any
Primary Sites
Blood
Bone Marrow
Tumor Types
Diffuse Large B Cell Lymphoma
Chronic Lymphocytic Leukemia
Interpretation

PIK3CA is the the p110 catalytic subunit-alpha of phosphatidylinositol 3 kinase. Activating mutations of PIK3CA occur in various types. PIK3CA mutations have been reported in approximately 8% of cases of diffuse large B cell lymphoma and are typically mutually exclusive of PTEN loss in that tumor type. PIK3CA mutations are very rare in chronic lymphocytic leukemia and believed to be absent in acute myeloid leukemia and myelodysplastic syndromes. PIK3CA mutations are potentially targetable in some settings and pathway inhibitors are currently under investigation .

Last updated: 2016-06-04 21:43:12 UTC
Read More
Tier 1
PIK3CA
Variants
PIK3CA E542K
PIK3CA E545K
PIK3CA H1047R
PIK3CA codon(s) 542, 545, 1047 any
Primary Sites
Breast
Tumor Types
Adenocarcinoma
Lobular Carcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways.The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains), with 80% of the identified mutations found within three hotspot: E542K, E545K, and H1047R. PIK3CA mutations are often found in hormone receptor positive breast cancer and have been associated with resistance to anti-EGFR therapy in some studies but not in others.

Last updated: 2017-01-20 03:27:58 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA exon(s) 10, 20, 21 any
Primary Sites
Colon
Rectum
Tumor Types
Adenocarcinoma
Interpretation

Somatic mutations in PIK3CA have been found in 10-30% of colorectal cancers. According to some reports, co-occurrence of both exon 9 and exon 20 PIK3CA mutations, when present, may be associated with a poor prognosis. Recent 'molecular pathological epidemiology' (MPE) research has shown that aspirin use is associated with better prognosis and clinical outcome in PIK3CA-mutated colorectal carcinoma, suggesting somatic PIK3CA mutation may be a molecular biomarker that predicts response to aspirin therapy. PIK3CA may also be a target of directed therapy in some clinical settings.

Last updated: 2020-07-24 14:52:12 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA exon(s) 10, 20, 21 any
Primary Sites
Thyroid
Tumor Types
Papillary Carcinoma
Carcinoma
Interpretation

Somatic mutations in PIK3CA are seen in approximately 2% of papillary thyroid carcinoma, poorly differentiated carcinoma, anaplastic carcinoma. Somatic mutations of PIK3CA have been described particularly in advanced and dedifferentiating thyroid tumors. Their prevalence varies from 16 to 23% in anaplastic thyroid carcinomas. They are less frequent in papillary and follicular thyroid carcinomas and the prevalence in medullary thyroid carcinomas remains unknown. Although inhibitors of the PI3K/AKT/mTOR pathway have shown efficacy against thyroid cancer in pre-clinical models, their success in clinical trials remains to be determined.

Last updated: 2015-12-09 20:21:59 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA exon(s) 10, 20, 21 any
Primary Sites
Brain
Tumor Types
Interpretation

PIK3CA mutations have been identified in pediatric and adult gliomas including: anaplastic oligodendrogliomas, anaplastic astrocytomas, glioblastoma multiforme, rosette forming glioneuronal tumors and medulloblastomas. PIK3CA mutations provide a mechanism for disrupting the PI3K/Akt pathway.

Last updated: 2015-12-09 20:21:59 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA exon(s) 10, 20, 21 any
Primary Sites
Lung
Tumor Types
Adenocarcinoma
Squamous Cell Carcinoma
Interpretation

Somatic mutations in PIK3CA have been found in 1–3% of NSCLC. These mutations typically occur within specific hotspot regions. PIK3CA mutations appear to be more common in squamous cell histology compared to adenocarcinoma and can occur with or without a history of smoking. PIK3CA mutations can co-occur with EGFR mutations and PIK3CA mutations have been detected in a small percentage (approximately 5%) of EGFR-mutated lung cancers with acquired resistance to EGFR TKI therapy.

Last updated: 2016-02-11 21:44:04 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA codon(s) 542, 545, 1047 any
Primary Sites
Bladder
Kidney
Ureter
Tumor Types
Urothelial Carcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways.The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains). Activating mutations in PIK3CA are found are found in a wide variety of human cancers including 27% urothelial bladder cancers, with a higher prevalence in low grade tumors. Up to 13.6% of renal pelvic urothelial carcinomas also harbor activating somatic mutations in PIK3CA gene. The role of PIK3CA mutations as prognosticators of outcome or predictors of therapeutic response awaits further evaluation.

Last updated: 2018-05-16 16:40:23 UTC
Read More
Tier 2
PIK3CA
Variants
Primary Sites
Brain
Tumor Types
Medulloblastoma
Interpretation

PIK3CA mutations have been identified in pediatric and adult gliomas including: anaplastic oligodendrogliomas, anaplastic astrocytomas, glioblastoma multiforme, rosette forming glioneuronal tumors and medulloblastomas. Although PIK3CA mutations are reported in medulloblastoma, their role in tumorigenesis remains controversial. According to some preclinical studies, mutations in PIK3CA likely activate the AKT pathway to progress, rather than initiate, WNT-medulloblastoma. PIK3CA mutations are potentially targetable in some settings and pathway inhibitors are currently under investigation.

Last updated: 2016-04-17 17:39:22 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA E542K
PIK3CA E545K
PIK3CA H1047R
PIK3CA codon(s) 542, 545, 1047 any
Primary Sites
Anus
Oral Cavity
Pharynx
Lung
Tumor Types
Squamous Cell Carcinoma
Interpretation

The catalytic subunit (p110a) of phosphatidylinositol-3-kinase (PI3K) is encoded by the PIK3CA gene and acts to activate several signaling cascades, including the well-characterized AKT-mTOR pathway that promotes cell survival, proliferation, growth and motility. PIK3CA is among the most commonly mutated genes in cancer and aberrant activation of PI3K is a transforming event. Somatic mutations in PIK3CA have been found in 1--3% of NSCLC and genetic alteration in PIK3CA have been identified in 7% of lung adenocarcinomas. These mutations typically occur within specific hotspot regions. PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains), with three hotspots (E542K, E545K, and H1047R/L). PIK3CA mutations have been reported in 8-21% and 20-33% of head/neck and anal squamous cell carcinoma, respectively. PIK3CA mutations, especially ones involving the helical domain, in these types of squamous cell carcinoma are highly associated with HPV. The predictive and prognostic significance of PIK3CA mutations in squamous cell carcinoma is unclear and needs further elucidation. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors.

Last updated: 2019-03-11 16:30:45 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA E542K
PIK3CA E545K
PIK3CA H1047R
PIK3CA codon(s) 542, 545, 1047 any
Primary Sites
Liver
Pancreas
Stomach
Tumor Types
Hepatocellular Carcinoma
Adenocarcinoma
Cholangiocarcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains), with three hotspots (E542K, E545K, and H1047R/L). PIK3CA mutations have been reported in various tumor types including up to 36% and 11% of hepatocellular carcinoma and gastric cancer, respectively. They are detected less frequently in cholangiocarcinoma (~6%) and pancreatic adenocarcinoma (~4%). The predictive and prognostic significance of PIK3CA mutations is unclear and needs further elucidation. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors.

Last updated: 2016-10-05 22:29:42 UTC
Read More
Tier 3
PIK3CA
Variants
Primary Sites
Prostate
Tumor Types
Adenocarcinoma
Carcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains). Activating mutations in PIK3CA are found in a wide variety of human cancers including up to 4% of prostate cancers. The role of PIK3CA mutations as prognosticators of outcome or predictors of therapeutic response awaits further evaluation. Clinical trials are available for patients with PIK3CA mutated tumors.

Last updated: 2016-10-23 21:58:06 UTC
Read More
Tier 1
PIK3CA
Variants
PIK3CA E545K
Primary Sites
Colon
Rectum
Tumor Types
Adenocarcinoma
Interpretation

Somatic mutations in PIK3CA have been found in 10-30% of colorectal cancers. KRAS, NRAS, BRAF and PIK3CA and non-functional PTEN predict resistance to anti-EGFR therapies in metastatic colorectal cancer. According to some reports, co-occurrence of both exon 9 and exon 20 PIK3CA mutations, when present, may be associated with a poor prognosis. Recent 'molecular pathological epidemiology' (MPE) research has shown that aspirin use may be associated with better prognosis and clinical outcome in PIK3CA-mutated colorectal carcinoma, suggesting somatic PIK3CA mutation may be a molecular biomarker that predicts response to aspirin therapy. PIK3CA may also be a target of directed therapy in some clinical settings.

Last updated: 2020-07-24 14:53:48 UTC
Read More
Tier 2
PIK3CA
Variants
Primary Sites
Kidney
Tumor Types
Renal Cell Carcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains). Activating mutations in PIK3CA are found in a wide variety of human cancers including up to 5% of renal cell carcinomas. The role of PIK3CA mutations as prognosticators of outcome or predictors of therapeutic response awaits further evaluation. Clinical trials are available for patients with PIK3CA mutated tumors.

Last updated: 2017-02-27 21:10:02 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA copy number gain
PIK3CA copy number loss
Primary Sites
Adrenal Gland
Anus
Ampulla (Pancreaticobiliary Duct)
Appendix
Bladder
Blood
Bone
Bone Marrow
Brain
Breast
Spinal Cord
Cervix
Chest Wall
Colon
Endometrium
Esophagus
Eye
Fallopian Tube
Fibroadipose Tissue
Gall Bladder
Kidney
Larynx
Liver
Lung
Lymph Node
Nasal Cavity
Oral Cavity
Ovary
Pancreas
Parathyroid
Penis
Peripheral Nervous System
Peritoneum
Pharynx
Pituitary
Placenta
Pleura
Prostate
Retroperitoneum
Salivary Gland
Seminal Vesicle
Skeletal Muscle
Skin
Small Intestine
Soft Tissue
Spleen
Stomach
Testis
Thymus
Thyroid
Tonsil
Unknown
Ureter
Uterus
Vagina
Rectum
Cartilage
Blood Vessel
Buccal Swab
Heart
Trachea
Salivary Duct
Spermatic Cord
Vulva
Brain, Infratentorial
Brain, Supratentorial
Gastroesophageal Junction
Sellar
Suprasellar
Peritoneal fluid
Pleural Fluid
Tongue
Tumor Types
Acinar Cell Carcinoma
Acinic Cell Carcinoma
Acute Myeloid Leukemia
Adenocarcinoma
Adenoid Cystic Carcinoma
Adenosarcoma
Ameloblastic Tumor
Anaplastic Large Cell Lymphoma
Angioimmunoblastic T-Cell Lymphoma
Angiomatoid Fibrous Histiocytoma
Angiomatosis
Angiomyolipoma
Angiosarcoma
Astrocytoma, Anaplastic
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Basal Cell Carcinoma
Burkitt Lymphoma
Carcinoid Tumor
Carcinoma
Carcinosarcoma
Cholangiocarcinoma
Chondrosarcoma
Chordoma
Choriocarcinoma
Chromophobe Renal Cell Carcinoma
Chronic Lymphocytic Leukemia
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Classical Hodgkin Lymphoma
Clear Cell Carcinoma
Clear Cell Renal Cell Carcinoma
Craniopharyngioma
Dermatofibrosarcoma
Desmoplastic Small Round Cell Tumor
Diffuse Large B Cell Lymphoma
Ductal Carcinoma
Ependymoma
Essential Thrombocythemia
Ewing Sarcoma
Fibromatosis
Follicular Carcinoma
Follicular Lymphoma
Gastrointestinal Stromal Tumor
Germ Cell Tumor
Giant Cell Tumor
Glioblastoma
Glomus Tumor
Granular Cell Tumor
Hairy Cell Leukemia
Hemangioendothelioma
Hepatocellular Carcinoma
Histiocytic and Dendritic Cell Neoplasms
Invasive Ductal Carcinoma
Kaposi Sarcoma
Langerhans Cell Histiocytosis
Leiomyoma
Leiomyosarcoma
Lipoma
Liposarcoma
Lobular Carcinoma
Lymphoplasmacytic Lymphoma
Malignant Mullerian Mixed Tumor
Mantle Cell Lymphoma
Marginal Zone B Cell Lymphoma
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Medullary Carcinoma
Medulloblastoma
Melanoma
Meningioma
Merkel Cell Carcinoma
Mesothelioma
Mucinous Adenocarcinoma
Mucinous Tumors of Ovary
Mucoepidermoid Carcinoma
Myelodysplastic Syndrome
Myeloproliferative Neoplasm
Myxofibrosarcoma
Nasopharyngeal Carcinoma
Neuroblastoma
Neuroendocrine Carcinoma
Neuroendocrine Neoplasm
NK Cell Lymphoproliferative Disorder
NLPHL
Non-Small Cell Lung Carcinoma
Oligodendroglioma
Osteosarcoma
Papillary Carcinoma
Papillary Renal Cell Carcinoma
Peripheral T Cell Lymphoma
Pheochromocytoma
Plasma Cell Disorder
Polycythemia Vera
Post-Transplant Lymphoproliferative Disorder
Primary Myelofibrosis
Primitive Neuroectodermal Tumor
Renal Cell Carcinoma
Reninoma
Retinoblastoma
Rhabdomyosarcoma
Sarcoma
Schwannoma
Serous Carcinoma
Sex Cord Stromal Tumor
Small Cell Carcinoma
Solid Pseudopapillary Tumor of Pancreas
Spindle Cell Neoplasm
Squamous Cell Carcinoma
T Cell Lymphoproliferative Disorder
T Lymphoblastic Leukemia/Lymphoma
T-Cell LGL Leukemia
Thymic Carcinoma
Thymoma
Urothelial Carcinoma
Tumors of Peripheral Nerves
Unknown
Wilms Tumor
Ependymoma, Anaplastic
Astrocytoma, Pilocytic
Ganglioglioma
Neuroepithelial Neoplasm, NOS
Pleomorphic Carcinoma
Solitary Fibrous Tumor
Neuroepithelial neoplasm, high grade
Leukocytosis
Thrombocytosis
Monocytosis
Cytopenia
Other Acute Leukemia
Astrocytoma, NOS
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Astrocytoma, Diffusely Infiltrating
Diffuse Midline Glioma
Infiltrating Glioma, NOS
Intraductal Papillary Mucinous Neoplasm (IPMN)
Leukopenia
Lymphadenopathy
Lymphocytosis, Symptomatic
Monoclonal Gammopathy
Mucinous or Serous Cystic Neoplasms of Pancreas
Mycosis Fungoides, Unspecified Site
Oligodendroglioma, Anaplastic
Pleomorphic Xanthoastrocytoma
Rash and Other Nonspecific Skin Eruption
Thrombocytopenia, Unspecified
Eosinophilia
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Polycythemia
Hurthle Cell Carcinoma
High Grade Glioma
Undifferentiated Sarcoma
Glioma
Interpretation

This gene is a known cancer gene.

Last updated: 2018-05-17 15:39:44 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA any mutation
Primary Sites
Adrenal Gland
Anus
Ampulla (Pancreaticobiliary Duct)
Appendix
Bladder
Blood
Bone
Bone Marrow
Brain
Breast
Spinal Cord
Cervix
Chest Wall
Colon
Endometrium
Esophagus
Eye
Fallopian Tube
Fibroadipose Tissue
Gall Bladder
Kidney
Larynx
Liver
Lung
Lymph Node
Nasal Cavity
Oral Cavity
Ovary
Pancreas
Parathyroid
Penis
Peripheral Nervous System
Peritoneum
Pharynx
Pituitary
Placenta
Pleura
Prostate
Retroperitoneum
Salivary Gland
Seminal Vesicle
Skeletal Muscle
Skin
Small Intestine
Soft Tissue
Spleen
Stomach
Testis
Thymus
Thyroid
Tonsil
Unknown
Ureter
Uterus
Vagina
Rectum
Cartilage
Blood Vessel
Buccal Swab
Heart
Trachea
Salivary Duct
Spermatic Cord
Vulva
Brain, Infratentorial
Brain, Supratentorial
Gastroesophageal Junction
Sellar
Suprasellar
Peritoneal fluid
Pleural Fluid
Tongue
Tumor Types
Acinar Cell Carcinoma
Acinic Cell Carcinoma
Acute Myeloid Leukemia
Adenocarcinoma
Adenoid Cystic Carcinoma
Adenosarcoma
Ameloblastic Tumor
Anaplastic Large Cell Lymphoma
Angioimmunoblastic T-Cell Lymphoma
Angiomatoid Fibrous Histiocytoma
Angiomatosis
Angiomyolipoma
Angiosarcoma
Astrocytoma, Anaplastic
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Basal Cell Carcinoma
Burkitt Lymphoma
Carcinoid Tumor
Carcinoma
Carcinosarcoma
Cholangiocarcinoma
Chondrosarcoma
Chordoma
Choriocarcinoma
Chromophobe Renal Cell Carcinoma
Chronic Lymphocytic Leukemia
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Classical Hodgkin Lymphoma
Clear Cell Carcinoma
Clear Cell Renal Cell Carcinoma
Craniopharyngioma
Dermatofibrosarcoma
Desmoplastic Small Round Cell Tumor
Diffuse Large B Cell Lymphoma
Ductal Carcinoma
Ependymoma
Essential Thrombocythemia
Ewing Sarcoma
Fibromatosis
Follicular Carcinoma
Follicular Lymphoma
Gastrointestinal Stromal Tumor
Germ Cell Tumor
Giant Cell Tumor
Glioblastoma
Glomus Tumor
Granular Cell Tumor
Hairy Cell Leukemia
Hemangioendothelioma
Hepatocellular Carcinoma
Histiocytic and Dendritic Cell Neoplasms
Invasive Ductal Carcinoma
Kaposi Sarcoma
Langerhans Cell Histiocytosis
Leiomyoma
Leiomyosarcoma
Lipoma
Liposarcoma
Lobular Carcinoma
Lymphoplasmacytic Lymphoma
Malignant Mullerian Mixed Tumor
Mantle Cell Lymphoma
Marginal Zone B Cell Lymphoma
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Medullary Carcinoma
Medulloblastoma
Melanoma
Meningioma
Merkel Cell Carcinoma
Mesothelioma
Mucinous Adenocarcinoma
Mucinous Tumors of Ovary
Mucoepidermoid Carcinoma
Myelodysplastic Syndrome
Myeloproliferative Neoplasm
Myxofibrosarcoma
Nasopharyngeal Carcinoma
Neuroblastoma
Neuroendocrine Carcinoma
Neuroendocrine Neoplasm
NK Cell Lymphoproliferative Disorder
NLPHL
Non-Small Cell Lung Carcinoma
Oligodendroglioma
Osteosarcoma
Papillary Carcinoma
Papillary Renal Cell Carcinoma
Peripheral T Cell Lymphoma
Pheochromocytoma
Plasma Cell Disorder
Polycythemia Vera
Post-Transplant Lymphoproliferative Disorder
Primary Myelofibrosis
Primitive Neuroectodermal Tumor
Renal Cell Carcinoma
Reninoma
Retinoblastoma
Rhabdomyosarcoma
Sarcoma
Schwannoma
Serous Carcinoma
Sex Cord Stromal Tumor
Small Cell Carcinoma
Solid Pseudopapillary Tumor of Pancreas
Spindle Cell Neoplasm
Squamous Cell Carcinoma
T Cell Lymphoproliferative Disorder
T Lymphoblastic Leukemia/Lymphoma
T-Cell LGL Leukemia
Thymic Carcinoma
Thymoma
Urothelial Carcinoma
Tumors of Peripheral Nerves
Unknown
Wilms Tumor
Ependymoma, Anaplastic
Astrocytoma, Pilocytic
Ganglioglioma
Neuroepithelial Neoplasm, NOS
Pleomorphic Carcinoma
Solitary Fibrous Tumor
Neuroepithelial neoplasm, high grade
Leukocytosis
Thrombocytosis
Monocytosis
Cytopenia
Other Acute Leukemia
Astrocytoma, NOS
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Astrocytoma, Diffusely Infiltrating
Diffuse Midline Glioma
Infiltrating Glioma, NOS
Intraductal Papillary Mucinous Neoplasm (IPMN)
Leukopenia
Lymphadenopathy
Lymphocytosis, Symptomatic
Monoclonal Gammopathy
Mucinous or Serous Cystic Neoplasms of Pancreas
Mycosis Fungoides, Unspecified Site
Oligodendroglioma, Anaplastic
Pleomorphic Xanthoastrocytoma
Rash and Other Nonspecific Skin Eruption
Thrombocytopenia, Unspecified
Eosinophilia
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Polycythemia
Hurthle Cell Carcinoma
High Grade Glioma
Undifferentiated Sarcoma
Glioma
Interpretation

This gene is a known cancer gene.

Last updated: 2018-05-17 15:40:39 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA M1043I
Primary Sites
Bladder
Tumor Types
Urothelial Carcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. PIK3CA mutations are present in ~5% of cutaneous melanomas. PIK3CA M1043I is a known oncogenic hotspot mutation. M1043I confers a gain of function on the protein as indicated by in increased activation of downstream signaling and and transformation in cell culture. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors.

Last updated: 2018-10-11 19:03:22 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA R88Q
Primary Sites
Colon
Tumor Types
Adenocarcinoma
Interpretation

Somatic mutations in PIK3CA have been found in 10--30% of colorectal cancers. KRAS, NRAS, BRAF and PIK3CA and non-functional PTEN predict resistance to anti-EGFR therapies in metastatic colorectal cancer. Recent 'molecular pathological epidemiology' (MPE) research has shown that aspirin use may be associated with better prognosis and clinical outcome in PIK3CA-mutated colorectal carcinoma, suggesting somatic PIK3CA mutation may be a molecular biomarker that predicts response to aspirin therapy. The R88Q mutation falls within the ABD domain of the p110a catalytic subunit and has been shown to result in gain-of-function in vitro. PIK3CA may be a target of directed therapy in some clinical settings.

Last updated: 2019-01-22 18:33:24 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA H1047R
Primary Sites
Lung
Tumor Types
Adenocarcinoma
Interpretation

The catalytic subunit (p110a) of phosphatidylinositol-3-kinase (PI3K) is encoded by the PIK3CA gene and acts to activate several signaling cascades, including the well-characterized AKT-mTOR pathway that promotes cell survival, proliferation, growth and motility. PIK3CA is among the most commonly mutated genes in cancer and aberrant activation of PI3K is a transforming event. Somatic mutations in PIK3CA have been found in 1--3% of NSCLC and genetic alteration in PIK3CA have been identified in 7% of lung adenocarcinomas. These mutations typically occur within specific hotspot regions. PIK3CA mutations appear to be more common in squamous cell histology compared to adenocarcinoma and can occur with or without a history of smoking. PIK3CA mutations can co-occur with EGFR mutations and PIK3CA mutations have been detected in a small percentage (approximately 5%) of EGFR-mutated lung cancers with acquired resistance to EGFR TKI therapy. The PIK3CA H1047R mutation is known to be oncogenic.

Last updated: 2019-01-22 18:40:15 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA N1044K
Primary Sites
Ampulla (Pancreaticobiliary Duct)
Tumor Types
Adenocarcinoma
Interpretation

The catalytic subunit of phosphatidylinositol-3-kinase (PI3K) is encoded by the PIK3CA gene. PIK3CA is among the most commonly mutated genes in cancer and aberrant activation of PI3K is a transforming event. PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains), with three hotspots (E542K, E545K, and H1047R/L). PIK3CA mutations have been reported in various tumor types including up to 36% and 11% of hepatocellular carcinoma and gastric cancer, respectively. They are detected less frequently in cholangiocarcinoma (~6%) and pancreatic adenocarcinoma (~4%). The predictive and prognostic significance of PIK3CA mutations is unclear and needs further elucidation. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors. The PIK3CA N1044K mutation is known to be oncogenic.

Last updated: 2019-01-22 18:41:27 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA E542K
Primary Sites
Small Intestine
Tumor Types
Adenocarcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exon 9 and 20 (helical and kinase domains), with three hotspots (E542K, E545K, and H1047R/L). PIK3CA mutations have been reported in various tumor types including up to 36% and 11% of hepatocellular carcinoma and gastric cancer, respectively. They are detected less frequently in cholangiocarcinoma (~6%) and pancreatic adenocarcinoma (~4%). The predictive and prognostic significance of PIK3CA mutations in adenocarcinoma of the small intestine is unclear and needs further elucidation. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors.

Last updated: 2019-01-22 18:42:15 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA E545K
Primary Sites
Ampulla (Pancreaticobiliary Duct)
Tumor Types
Adenocarcinoma
Interpretation

PIK3CA mutations activate the PI3K-PTEN-AKT pathway which is downstream from both the EGFR and the RAS-RAF-MAPK pathways. The somatic mutations found thus far in PIK3CA are oncogenic, and the majority of them are clustered within exons 9 and 20 (helical and kinase domains), with three hotspots (E542K, E545K, and H1047R/L). PIK3CA mutations have been reported in various tumor types including up to 36% and 11% of hepatocellular carcinoma and gastric cancer, respectively. They are detected less frequently in cholangiocarcinoma (~6%) and pancreatic adenocarcinoma (~4%). The predictive and prognostic significance of PIK3CA mutations is unclear and needs further elucidation. Clinical trials targeting PI3K/Akt/mTor pathway inhibitors are available for patients with PIK3CA mutated tumors.

Last updated: 2019-01-22 18:48:48 UTC
Read More
Tier 2
PIK3CA
Variants
PIK3CA P539R
Primary Sites
Thyroid
Tumor Types
Papillary Carcinoma
Interpretation

The catalytic subunit (p110a) of phosphatidylinositol-3-kinase (PI3K) is encoded by the PIK3CA gene and acts to activate several signaling cascades, including the well-characterized AKT-mTOR pathway that promotes cell survival, proliferation, growth and motility. PIK3CA is among the most commonly mutated genes in cancer and aberrant activation of PI3K is a transforming event. Somatic mutations in PIK3CA are seen in approximately 2% of papillary thyroid carcinoma, poorly differentiated carcinoma, anaplastic carcinoma. Somatic mutations of PIK3CA have been described particularly in advanced and dedifferentiating thyroid tumors. Their prevalence varies from 16 to 23% in anaplastic thyroid carcinomas. They are less frequent in papillary and follicular thyroid carcinomas and the prevalence in medullary thyroid carcinomas remains unknown. Although inhibitors of the PI3K/AKT/mTOR pathway have shown efficacy against thyroid cancer in pre-clinical models, their success in clinical trials remains to be determined.

Last updated: 2019-03-11 16:33:40 UTC
Read More
PMKB Bot
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity

Disclaimer: You assume full responsibility for all risks associated with using this PMKB website. The Englander Institute for Precision Medicine at Weill Cornell Medicine makes no guarantee of the comprehensiveness, reliability or accuracy of the information on this website and assumes no responsibility for errors in the information associated with this web site. Healthcare providers and patients must integrate all clinical and laboratory findings as well as information from a variety of sources before deciding on appropriate clinical care options.


When using PMKB, please cite: Huang et al., JAMIA 2017


HELP
User Guide
Video Tutorial
INFO
About
Latest
API
Twitter
CONTACT US
Contact

Englander Institute for Precision Medicine
© Weill Cornell Medicine | Version 1.7.2Privacy PolicyTerms of use