WCMC logo
PMKB
  • WCMC logoPMKB
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity
  • Login
Search
Variants
VariantGeneTypeCOSMIC IDDNA Change (Coding Nucleotide)Exon
NPM1 copy number gainNPM1CNV
NPM1 copy number lossNPM1CNV
NPM1 any mutationNPM1any
NPM1 codon(s) 288 frameshiftNPM1frameshift11
NPM1 codon(s) 290 frameshiftNPM1frameshift11

Interpretations

Sort by
Page
Show

Tier 1
NPM1
Variants
NPM1 codon(s) 288 frameshift
NPM1 codon(s) 290 frameshift
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic Syndrome
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

Mutations of NPM1 have been reported in approximately 25-35% of cases of acute myeloid leukemia (AML). The mutations of NPM1 are frameshift mutations in the C-terminus of the protein that alter the C-terminal amino acid sequence and are associated with aberrant cytoplasmic localization of the protein. NPM1 mutations in AML are typically associated with a normal karyotype and may co-exist with FLT3 mutations. The presence of NPM1 mutations has been associated with improved complete remission rates, but not necessarily overall survival, in multivariate analysis including assessment of the variety of more recently discovered mutations that may be present in AML. In addition, cytogenetically normal AML with mutated NPM1, without FLT3 ITD or mutated DNMT3A, has been considered to be a favorable genetic risk group according to some studies, although other studies suggest that coexistant mutations in IDH1 or IDH2 may be required for the favorable risk effect of NPM1.

Last updated: 2018-11-12 20:40:30 UTC
Read More
Tier 2
NPM1
Variants
NPM1 copy number gain
NPM1 copy number loss
Primary Sites
Adrenal Gland
Anus
Ampulla (Pancreaticobiliary Duct)
Appendix
Bladder
Blood
Bone
Bone Marrow
Brain
Breast
Spinal Cord
Cervix
Chest Wall
Colon
Endometrium
Esophagus
Eye
Fallopian Tube
Fibroadipose Tissue
Gall Bladder
Kidney
Larynx
Liver
Lung
Lymph Node
Nasal Cavity
Oral Cavity
Ovary
Pancreas
Parathyroid
Penis
Peripheral Nervous System
Peritoneum
Pharynx
Pituitary
Placenta
Pleura
Prostate
Retroperitoneum
Salivary Gland
Seminal Vesicle
Skeletal Muscle
Skin
Small Intestine
Soft Tissue
Spleen
Stomach
Testis
Thymus
Thyroid
Tonsil
Unknown
Ureter
Uterus
Vagina
Rectum
Cartilage
Blood Vessel
Buccal Swab
Heart
Trachea
Salivary Duct
Spermatic Cord
Vulva
Brain, Infratentorial
Brain, Supratentorial
Gastroesophageal Junction
Sellar
Suprasellar
Peritoneal fluid
Pleural Fluid
Tongue
Tumor Types
Acinar Cell Carcinoma
Acinic Cell Carcinoma
Adenocarcinoma
Adenoid Cystic Carcinoma
Adenosarcoma
Ameloblastic Tumor
Anaplastic Large Cell Lymphoma
Angioimmunoblastic T-Cell Lymphoma
Angiomatoid Fibrous Histiocytoma
Angiomatosis
Angiomyolipoma
Angiosarcoma
Astrocytoma, Anaplastic
Basal Cell Carcinoma
Burkitt Lymphoma
Carcinoid Tumor
Carcinoma
Carcinosarcoma
Cholangiocarcinoma
Chondrosarcoma
Chordoma
Choriocarcinoma
Chromophobe Renal Cell Carcinoma
Chronic Lymphocytic Leukemia
Classical Hodgkin Lymphoma
Clear Cell Carcinoma
Clear Cell Renal Cell Carcinoma
Craniopharyngioma
Dermatofibrosarcoma
Desmoplastic Small Round Cell Tumor
Diffuse Large B Cell Lymphoma
Ductal Carcinoma
Ependymoma
Ewing Sarcoma
Fibromatosis
Follicular Carcinoma
Follicular Lymphoma
Gastrointestinal Stromal Tumor
Germ Cell Tumor
Giant Cell Tumor
Glioblastoma
Glomus Tumor
Granular Cell Tumor
Hairy Cell Leukemia
Hemangioendothelioma
Hepatocellular Carcinoma
Invasive Ductal Carcinoma
Kaposi Sarcoma
Leiomyoma
Leiomyosarcoma
Lipoma
Liposarcoma
Lobular Carcinoma
Lymphoplasmacytic Lymphoma
Malignant Mullerian Mixed Tumor
Mantle Cell Lymphoma
Marginal Zone B Cell Lymphoma
Medullary Carcinoma
Medulloblastoma
Melanoma
Meningioma
Merkel Cell Carcinoma
Mesothelioma
Mucinous Adenocarcinoma
Mucinous Tumors of Ovary
Mucoepidermoid Carcinoma
Myxofibrosarcoma
Nasopharyngeal Carcinoma
Neuroblastoma
Neuroendocrine Carcinoma
Neuroendocrine Neoplasm
NK Cell Lymphoproliferative Disorder
NLPHL
Non-Small Cell Lung Carcinoma
Oligodendroglioma
Osteosarcoma
Papillary Carcinoma
Papillary Renal Cell Carcinoma
Peripheral T Cell Lymphoma
Pheochromocytoma
Plasma Cell Disorder
Post-Transplant Lymphoproliferative Disorder
Primitive Neuroectodermal Tumor
Renal Cell Carcinoma
Reninoma
Retinoblastoma
Rhabdomyosarcoma
Sarcoma
Schwannoma
Serous Carcinoma
Sex Cord Stromal Tumor
Small Cell Carcinoma
Solid Pseudopapillary Tumor of Pancreas
Spindle Cell Neoplasm
Squamous Cell Carcinoma
T Cell Lymphoproliferative Disorder
T-Cell LGL Leukemia
Thymic Carcinoma
Thymoma
Urothelial Carcinoma
Tumors of Peripheral Nerves
Unknown
Wilms Tumor
Ependymoma, Anaplastic
Astrocytoma, Pilocytic
Ganglioglioma
Neuroepithelial Neoplasm, NOS
Pleomorphic Carcinoma
Solitary Fibrous Tumor
Neuroepithelial neoplasm, high grade
Astrocytoma, NOS
Astrocytoma, Diffusely Infiltrating
Diffuse Midline Glioma
Infiltrating Glioma, NOS
Intraductal Papillary Mucinous Neoplasm (IPMN)
Lymphadenopathy
Lymphocytosis, Symptomatic
Monoclonal Gammopathy
Mucinous or Serous Cystic Neoplasms of Pancreas
Mycosis Fungoides, Unspecified Site
Oligodendroglioma, Anaplastic
Pleomorphic Xanthoastrocytoma
Rash and Other Nonspecific Skin Eruption
Hurthle Cell Carcinoma
High Grade Glioma
Undifferentiated Sarcoma
Glioma
Interpretation

This gene is a known cancer gene.

Last updated: 2019-08-28 14:53:58 UTC
Read More
Tier 2
NPM1
Variants
NPM1 any mutation
Primary Sites
Adrenal Gland
Anus
Ampulla (Pancreaticobiliary Duct)
Appendix
Bladder
Blood
Bone
Bone Marrow
Brain
Breast
Spinal Cord
Cervix
Chest Wall
Colon
Endometrium
Esophagus
Eye
Fallopian Tube
Fibroadipose Tissue
Gall Bladder
Kidney
Larynx
Liver
Lung
Lymph Node
Nasal Cavity
Oral Cavity
Ovary
Pancreas
Parathyroid
Penis
Peripheral Nervous System
Peritoneum
Pharynx
Pituitary
Placenta
Pleura
Prostate
Retroperitoneum
Salivary Gland
Seminal Vesicle
Skeletal Muscle
Skin
Small Intestine
Soft Tissue
Spleen
Stomach
Testis
Thymus
Thyroid
Tonsil
Unknown
Ureter
Uterus
Vagina
Rectum
Cartilage
Blood Vessel
Buccal Swab
Heart
Trachea
Salivary Duct
Spermatic Cord
Vulva
Brain, Infratentorial
Brain, Supratentorial
Gastroesophageal Junction
Sellar
Suprasellar
Peritoneal fluid
Pleural Fluid
Tongue
Tumor Types
Acinar Cell Carcinoma
Acinic Cell Carcinoma
Adenocarcinoma
Adenoid Cystic Carcinoma
Adenosarcoma
Ameloblastic Tumor
Anaplastic Large Cell Lymphoma
Angioimmunoblastic T-Cell Lymphoma
Angiomatoid Fibrous Histiocytoma
Angiomatosis
Angiomyolipoma
Angiosarcoma
Astrocytoma, Anaplastic
Basal Cell Carcinoma
Burkitt Lymphoma
Carcinoid Tumor
Carcinoma
Carcinosarcoma
Cholangiocarcinoma
Chondrosarcoma
Chordoma
Choriocarcinoma
Chromophobe Renal Cell Carcinoma
Chronic Lymphocytic Leukemia
Classical Hodgkin Lymphoma
Clear Cell Carcinoma
Clear Cell Renal Cell Carcinoma
Craniopharyngioma
Dermatofibrosarcoma
Desmoplastic Small Round Cell Tumor
Diffuse Large B Cell Lymphoma
Ductal Carcinoma
Ependymoma
Ewing Sarcoma
Fibromatosis
Follicular Carcinoma
Follicular Lymphoma
Gastrointestinal Stromal Tumor
Germ Cell Tumor
Giant Cell Tumor
Glioblastoma
Glomus Tumor
Granular Cell Tumor
Hairy Cell Leukemia
Hemangioendothelioma
Hepatocellular Carcinoma
Invasive Ductal Carcinoma
Kaposi Sarcoma
Leiomyoma
Leiomyosarcoma
Lipoma
Liposarcoma
Lobular Carcinoma
Lymphoplasmacytic Lymphoma
Malignant Mullerian Mixed Tumor
Mantle Cell Lymphoma
Marginal Zone B Cell Lymphoma
Medullary Carcinoma
Medulloblastoma
Melanoma
Meningioma
Merkel Cell Carcinoma
Mesothelioma
Mucinous Adenocarcinoma
Mucinous Tumors of Ovary
Mucoepidermoid Carcinoma
Myxofibrosarcoma
Nasopharyngeal Carcinoma
Neuroblastoma
Neuroendocrine Carcinoma
Neuroendocrine Neoplasm
NK Cell Lymphoproliferative Disorder
NLPHL
Non-Small Cell Lung Carcinoma
Oligodendroglioma
Osteosarcoma
Papillary Carcinoma
Papillary Renal Cell Carcinoma
Peripheral T Cell Lymphoma
Pheochromocytoma
Plasma Cell Disorder
Post-Transplant Lymphoproliferative Disorder
Primitive Neuroectodermal Tumor
Renal Cell Carcinoma
Reninoma
Retinoblastoma
Rhabdomyosarcoma
Sarcoma
Schwannoma
Serous Carcinoma
Sex Cord Stromal Tumor
Small Cell Carcinoma
Solid Pseudopapillary Tumor of Pancreas
Spindle Cell Neoplasm
Squamous Cell Carcinoma
T Cell Lymphoproliferative Disorder
T-Cell LGL Leukemia
Thymic Carcinoma
Thymoma
Urothelial Carcinoma
Tumors of Peripheral Nerves
Unknown
Wilms Tumor
Ependymoma, Anaplastic
Astrocytoma, Pilocytic
Ganglioglioma
Neuroepithelial Neoplasm, NOS
Pleomorphic Carcinoma
Solitary Fibrous Tumor
Neuroepithelial neoplasm, high grade
Astrocytoma, NOS
Astrocytoma, Diffusely Infiltrating
Diffuse Midline Glioma
Infiltrating Glioma, NOS
Intraductal Papillary Mucinous Neoplasm (IPMN)
Lymphadenopathy
Lymphocytosis, Symptomatic
Monoclonal Gammopathy
Mucinous or Serous Cystic Neoplasms of Pancreas
Mycosis Fungoides, Unspecified Site
Oligodendroglioma, Anaplastic
Pleomorphic Xanthoastrocytoma
Rash and Other Nonspecific Skin Eruption
Hurthle Cell Carcinoma
High Grade Glioma
Undifferentiated Sarcoma
Glioma
Interpretation

This gene is a known cancer gene.

Last updated: 2019-08-28 14:53:59 UTC
Read More
Tier 2
BCOR
Variants
BCOR any mutation
BCOR any missense
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Leukemia of Unspecified Cell Type
Acute Myeloid Leukemia
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
MDS with Ring Sideroblasts
Myelodysplastic Syndrome
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Myeloproliferative Neoplasm
Thrombocytopenia, Unspecified
Other Acute Leukemia
Leukopenia
Essential Thrombocythemia
Primary Myelofibrosis
Monocytosis
Polycythemia
Thrombocytosis
Leukocytosis
Interpretation

BCOR is a ubiquitously expressed nuclear protein that is a transcriptional corepressor important in several cellular processes. Somatic, nonsense and frameshift mutations throughout BCOR have been reported in approximately 7% of chronic myelomonocytic leukemia, 4% of patients with myelodysplastic syndrome(MDS), 4% of primary acute myeloid leukemia and appear to be associated with RUNX1 and DNMT3A mutations . Also, BCOR mutations may be enriched among cases of AML lacking NPM1, CEBPA, FLT3-ITD, IDH1 and MLL-PTD alterations. BCOR mutations tend to be subclonal in MDS, clonal in primary AML and are believed to have significance as loss of function mutations in a tumor suppressor gene that affect the functional allele in male and female patients. The presence of BCOR mutation in patients with MDS and AML has been associated with poorer overall survival according to some studies.

Last updated: 2019-01-02 22:50:45 UTC
Read More
Tier 2
RAD21
Variants
RAD21 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Myelodysplastic Syndrome
Chronic Myeloid Leukemia
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

RAD21 belongs to the cohesin complex family of genes that encode protein subunits of the cohesion complex, which regulates chromosomal segregation. is a member of the cohesin complex that regulates chromosome segregation during meiosis and mitosis. Loss of function mutations of RAD21 have been described throughout the gene in approximately 1% of cases of myelodysplasia, 1-5% of acute myeloid leukemia (AML), 1% of chronic myeloid leukemia and tend to be mutually exclusive of other mutations in the other components of the cohesin complex (ie, STAG1, SMC3, STAG2, SMC1A). In AML, mutations in the cohesin complex genes tend to be associated with mutations in NPM1. Cohesin complex mutations do not have clear prognostic impact in AML. Cohesin complex mutations are associated with an unfavorable prognosis in myelodysplastic syndrome, and are more frequently found in patients with high IPSS scores and secondary acute myeloid leukemia.

Last updated: 2019-08-28 14:54:01 UTC
Read More
Tier 1
SMC3
Variants
SMC3 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Myelodysplastic Syndrome
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

SMC3 is a member of the cohesin complex and has been found to be mutated in approximately 1% of acute myeloid leukemia and 1% myelodysplastic syndromes. The mutations of SMC3 described tend to be missense mutations that occur throughout the gene. Mutations of the various members of the cohesin complex appear to occur in a mutually exclusive manner. Cases of AML with mutations of the cohesin complex may be associated with mutations of NPM1. Currently there does not appear to be any clear prognosistic impact of cohesin complex gene mutations in AML. Cohesin complex mutations are associated with an unfavorable prognosis in myelodysplastic syndrome, and are more frequently found in patients with high IPSS scores and secondary acute myeloid leukemia.

Last updated: 2019-08-28 14:54:01 UTC
Read More
Tier 1
BCOR
Variants
BCOR any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Chronic Myelomonocytic Leukemia
Myelodysplastic Syndrome
Acute Myeloid Leukemia
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

BCOR is a ubiquitously expressed nuclear protein that is a transcriptional corepressor important in several cellular processes. Somatic, nonsense and frameshift mutations throughout BCOR have been reported in approximately 7% of chronic myelomonocytic leukemia, 4% of patients with myelodysplastic syndrome(MDS), 4% of primary acute myeloid leukemia and appear to be associated with RUNX1 and DNMT3A mutations . Also, BCOR mutations may be enriched among cases of AML lacking NPM1, CEBPA, FLT3-ITD, IDH1 and MLL-PTD alterations. BCOR mutations tend to be subclonal in MDS, clonal in primary AML and are believed to have significance as loss of function mutations in a tumor suppressor gene that affect the functional allele in male and female patients. The presence of BCOR mutation in patients with MDS and AML has been associated with poorer overall survival according to some studies.

Last updated: 2019-08-28 14:54:02 UTC
Read More
Tier 2
ASXL1
Variants
ASXL1 any missense
ASXL1 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Essential Thrombocythemia
MDS with Ring Sideroblasts
Myelodysplastic Syndrome
Myeloproliferative Neoplasm
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Monocytosis
Primary Myelofibrosis
Thrombocytopenia, Unspecified
Thrombocytosis
Mast Cell Neoplasm
Interpretation

ASXL1 regulates epigenetic functions including histone and chromatin modifications. ASXL1 mutations have been reported in 40-50% of chronic myelomonocytic leukemia(CMML), 20% of myelodsyplastic syndromes, 20-35% of primary myelofibrosis, 15% of systemic mastocytosis, 30% of patients with secondary acute myeloid leukemia and 5-10% of primary acute myeloid leukemia. ASXL1 mutations have also been described in CHIP and CCUS. In CMML, missense mutations of ASXL1 appear to be less common (less than 10% of cases). Nonsense and frameshift mutations (but apparently not missense mutations) of ASXL1 have been reported to carry an adverse prognostic impact in cases of chronic myelomonocytic leukemia. In addition, ASXL1 mutations have been associated with adverse outcome in myelodysplasia, primary myelofibrosis and systemic mastocytosis. Among cases of AML, ASXL1 mutations appear to be associated with adverse prognosis in some subtypes of AML according to some, but not all, studies. ASXL1 mutations may coexist with mutations of splicing factor components, TET2 and RUNX1; for example, co-existence of U2AF1 and ASXL1 mutations have been described in CMML and primary myelofibrosis; While in AML, ASXL1 mutations have been reported to be exclusive of NPM1 mutations according to some studies.

Last updated: 2018-11-12 20:40:39 UTC
Read More
Tier 2
DNMT3A
Variants
DNMT3A any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Myeloproliferative Neoplasm
Acute Myeloid Leukemia
T Lymphoblastic Leukemia/Lymphoma
Myelodysplastic Syndrome
Chronic Myelomonocytic Leukemia
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

DNMT3A is a DNA methyltransferase. Recurrent, somatic, heterozygous mutations in DNMT3A have been reported in approximately 18-25% of cases of acute myeloid leukemia (up to 34% of normal karyotype AML), 12-18% of cases of myelodysplastic syndrome, up to 15% of myeloproliferative neoplasms, less than 5% of cases of chronic myelomonocytic leukemia and 15% of cases of adult, eary T cell precursor acute lymphoblastic leukemia. DNMT3A is also one of the most frequently mutated genes in CHIP and CCUS. Mutations in DNMT3A may occur together with mutations in other genes including JAK2, FLT3, IDH1/IDH2, ASXL1, TET2 and NPM1. DNMT3A mutations have been associated with reduced enzymatic activity or altered histone binding, as well as reduced DNA methylation in various genomic regions and altered gene expression in some models. Codon R882 is a hotspot for mutations in DNMT3A. DNMT3A mutations may be associated with adverse prognosis in specific subtypes of AML according to some, but not all studies; the prognostic significance of DNMT3A in AML may depend on patient age, type of DNMT3A mutation (R882 or non-R882 mutation) and the co-existence (or absence) of specific mutations in other genes. DNMT3A mutations may also be associated with adverse prognosis in MDS according to some studies.

Last updated: 2019-08-28 14:54:00 UTC
Read More
Tier 1
ASXL1
Variants
ASXL1 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Myeloproliferative Neoplasm
Chronic Myelomonocytic Leukemia
Myelodysplastic Syndrome
Acute Myeloid Leukemia
Primary Myelofibrosis
Mast Cell Neoplasm
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

ASXL1 regulates epigenetic functions including histone and chromatin modifications. ASXL1 mutations have been reported in 40-50% of chronic myelomonocytic leukemia(CMML), 20% of myelodsyplastic syndromes, 20-35% of primary myelofibrosis, 15% of systemic mastocytosis, 30% of patients with secondary acute myeloid leukemia and 5-10% of primary acute myeloid leukemia. ASXL1 mutations have also been described in CHIP and CCUS. In CMML, missense mutations of ASXL1 appear to be less common (less than 10% of cases). Nonsense and frameshift mutations (but apparently not missense mutations) of ASXL1 have been reported to carry an adverse prognostic impact in cases of chronic myelomonocytic leukemia. In addition, ASXL1 mutations have been associated with adverse outcome in myelodysplasia, primary myelofibrosis and systemic mastocytosis. Among cases of AML, ASXL1 mutations appear to be associated with adverse prognosis in some subtypes of AML according to some, but not all, studies. ASXL1 mutations may coexist with mutations of splicing factor components, TET2 and RUNX1; for example, co-existence of U2AF1 and ASXL1 mutations have been described in CMML and primary myelofibrosis; While in AML, ASXL1 mutations have been reported to be exclusive of NPM1 mutations according to some studies.

Last updated: 2019-08-28 14:54:01 UTC
Read More
Tier 1
IDH1
Variants
IDH1 R132H
IDH1 R132L
IDH1 R132C
IDH1 codon(s) 132 any
Primary Sites
Blood
Bone Marrow
Tumor Types
Myeloproliferative Neoplasm
Acute Myeloid Leukemia
Myelodysplastic Syndrome
Primary Myelofibrosis
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

IDH1 is an enzyme localized to the cytoplasm and peroxisomes and involved in citrate metabolism. Mutations at Arg132 of IDH1 are typically heterozygous mutations and considered gain of function mutations that lead to increased levels of 2-hydroxyglutarate which are believed to alter epigenetic regulation (ie, DNA methylation) in AML. Mutations of IDH1 appear to be mutually exclusive of mutations in TET2, another gene involved in regulation of DNA methylation, and also exclusive of mutations in IDH2. Mutations of IDH1 have been shown to lead to increased DNA methylation in AML. Recurrent missense mutation of Arg 132 in IDH1 has been reported in approximately 5-15% of cases of acute myeloid leukemia and is often associated with a normal karyotype, wild type CEBPA, wild type FLT3 and the presence of NPM1 mutations. In addition, this mutation has been reported in approximately 10-20% of cases with leukemic transformation of myeloproliferative neoplasms and has been reported in less than 5% of chronic phase primary myelofibrosis, less than 5% of myelodysplastic syndrome and rare cases of polycythemia vera, essential thrombocytosis and chronic myelomonocytic leukemia. The prognostic impact of IDH1 mutations in AML appears uncertain, however, in the settings of primary myelofibrosis and polycythemia vera, the presence of IDH1 mutation is independently associated with inferior survival. Mutant IDH1 represents a therapeutic target in some clinical settings.

Last updated: 2018-11-12 20:41:31 UTC
Read More
Tier 2
WT1
Variants
WT1 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic Syndrome
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

WT1 encodes for a transcription factor containing an N-terminal transactivation domain and a C-terminal zinc-finger domain necessary for the development of the urogenital system. The precise roles of WT1 in normal and malignant hematopoiesis remain uncertain. New emerging supports a novel role of WT1 in the regulation of epigenetic programs through its interaction with TET proteins in the 5=hydroxymethylation of cytosines. WT1 mutations are found in 6% of acute myeloid leukemia overall, and about 8-13% in cytogenetically normal AML. Higher frequencies are present in biallelic CEBPA mutated acute myeloid leukemia (14%), followed by t(15;17)/PML-RARA (11.0%), and FLT3-ITD (8.5%,). WT1 mutations are associated with younger age in AML. WT1 mutations are typically putative loss of function mutations and most frequently occur in exon 7 or exon 9. About 75% of these mutations are frameshift, and the remaining are missense, nonsense, splice site or inframe indel mutations. In some cases two or more mutations in WT1 may occur. In addition, WT1 mutations may coexist with mutations in NPM1, FLT3, among others. WT1 is overexpressed in the majority of AML, giving rise to the concept that it may act as both a tumor suppressor and oncogene, depending on the context. Several studies showed that WT1 mutations are associated with a worse prognosis in cytogenetically normal acute myeloid leukemia, although one study including patients from three German-Austrian AML study protocols demonstrated no association with overall survival or relapse-free survival. Given its over-expression in AML, clinical trials employing peptide vaccination strategy against WT1 has been ongoing in AML patients.

Last updated: 2019-08-28 14:54:01 UTC
Read More
Tier 2
PTPN11
Variants
PTPN11 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Acute Myeloid Leukemia
Myelodysplastic Syndrome
B Lymphoblastic Leukemia/Lymphoma
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

PTPN11 encodes SHP2, a member of the non-receptor protein tyrosine phosphatase (PTP) family that regulates growth factor and cytokine signaling and plays a key role in the proliferation and survival of hematopoietic cells. PTPN11 mutation is directly associated with the pathogenesis of Noonan syndrome and childhood leukemias. Despite its direct function in protein dephosphorylation, SHP2 plays an overall positive role in transducing signals. Germline and somatic mutations that result in increased activity of PTPN11 have been described in Noonan's syndrome (approximately 50%), juvenile myelomonocytic leukemia (35-42%), pediatric and adult myelodysplasic syndromes (4-10%), B cell acute lymphoblastic leukemia (5-10%), as well as pediatric and adult acute myeloid leukemia (5-10%). These gain of function mutations most often occur as heterozygous missense mutations located in exon 3 (SH2 domain) or exon 13 (phosphatase domain) . Within cases of juvenile myelomonocytic leukemia, mutations of PTPN11 tend to be exclusive of mutations in RAS, CBL and NF-1. PTPN11 mutations in adult AML are associated with a normal karyotype and concurrent NPM1 mutation, but no alteration of the FLT3. In one study, myelodysplastic syndromes with PTPN11 mutations were shown to have a worse overall survival. Small molecule inhibitors of PTPN11 are currently being developed.

Last updated: 2019-08-28 14:54:01 UTC
Read More
Tier 1
RUNX1
Variants
RUNX1 any mutation
Primary Sites
Blood
Bone Marrow
Tumor Types
Myelodysplastic Syndrome
Acute Myeloid Leukemia
Chronic Myelomonocytic Leukemia
T Lymphoblastic Leukemia/Lymphoma
Acute Leukemia of Unspecified Cell Type
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Essential Thrombocythemia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
MDS with Ring Sideroblasts
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
Primary Myelofibrosis
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

RUNX1(AML1, CBFA2) encodes the alpha subunit of core binding factor and is a transcription factor important in normal hematopoietic development. RUNX1 mutations have been reported in approximately 10% of myelodysplastic cases, 5-15% of acute myeloid leukemia, 8-37% of chronic myelomonocytic leukemia, 10% of T cell acute lymphoblastic leukemia, 3% of systemic mastocytosis, 2% of essential thrombocythemia and 2% of polycythemia vera. The mutations include frameshift, missense, nonsense, and splice site mutations. Typically, the Runt domain and the region just downstream of the Runt domain are affected and the mutations tend to be monoallelic. AML with RUNX1 mutation which does not fulfill the diagnostic criteria for other specific AML subtypes in the categories of AML with recurrent genetic abnormalities, therapy-related myeloid neoplasms, or AML with myelodysplasia-related changes is now classified the provisional entity of AML with mutated RUNX1. RUNX1 mutations may be associated with Trisomy 8 or MLL-PTD in AML according to some studies. They tend not to occur in AML cases with favorable cytogenetic findings and appear to be exclusive of NPM1 or CEBPA mutations in AML. Myeloid neoplasms, predominantly MDS/AML, developing in patients, usually at a young age, with a familial platelet disorder and germline monoallelic RUNX1 mutations are categorized as myeloid neoplasms with germline RUNX1 mutation. Of note, RUNX1 may also be involved in large intragenic deletions and translocations (e.g., t(8;21)(RUNX1-ETO), t(3;21)(RUNX1-EVI1), t(12;21)(TEL-RUNX1) which are not detected by this assay. Mutated RUNX1 is a poor-risk prognostic marker in AML unless it co-occurs with favorable-risk AML subtypes (NCCN Guidelines for AML). RUNX1 nonsense or frameshift mutations are associated with an unfavorable prognosis in myelodysplastic syndrome, independent of IPSS, IPSS-R, age, and other gene mutations (NCCN Guidelines for Myelodysplastic Syndromes). RUNX1 mutations are independently associated with unfavorable outcomes and shorter survival after hematopoietic stem cell transplantation in patients with myelodysplastic syndrome and myelodysplastic syndrome/acute myeloid leukemia. RUNX1 mutations are also associated with an unfavorable prognosis chronic myelomonocytic leukemia and systemic mastocytosis.

Last updated: 2019-08-28 14:54:01 UTC
Read More
PMKB Bot
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity

Disclaimer: You assume full responsibility for all risks associated with using this PMKB website. The Englander Institute for Precision Medicine at Weill Cornell Medicine makes no guarantee of the comprehensiveness, reliability or accuracy of the information on this website and assumes no responsibility for errors in the information associated with this web site. Healthcare providers and patients must integrate all clinical and laboratory findings as well as information from a variety of sources before deciding on appropriate clinical care options.


When using PMKB, please cite: Huang et al., JAMIA 2017


HELP
User Guide
Video Tutorial
INFO
About
Latest
API
Twitter
CONTACT US
Contact

Englander Institute for Precision Medicine
© Weill Cornell Medicine | Version 1.7.2Privacy PolicyTerms of use