WCMC logo
PMKB
  • WCMC logoPMKB
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity
  • Login
CALR
  • Information
  • View History
  • Pending Review
Interpretation 87
Tier 1
CALR
Variants
CALR exon(s) 9 frameshift
Primary Sites
Blood
Bone Marrow
Tumor Types
Myeloproliferative Neoplasm
Essential Thrombocythemia
Primary Myelofibrosis
MDS with Ring Sideroblasts
Myelodysplastic Syndrome
Acute Leukemia of Unspecified Cell Type
Acute Myeloid Leukemia
Anemia, Unspecified
Atypical Chronic Myeloid Leukemia
B Lymphoblastic Leukemia/Lymphoma
Chronic Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Chronic Neutrophilic Leukemia
Cytopenia
Eosinophilia
Histiocytic and Dendritic Cell Neoplasms
Langerhans Cell Histiocytosis
Leukocytosis
Leukopenia
Mast Cell Neoplasm
Monocytosis
Myelodysplastic/Myeloproliferative Neoplasm
Myeloid Neoplasm
Other Acute Leukemia
Polycythemia Vera
Polycythemia
T Lymphoblastic Leukemia/Lymphoma
Thrombocytopenia, Unspecified
Thrombocytosis
Interpretation

Calreticulin(CALR) is an endoplasmic reticulum chaperone protein. Somatic insertions and deletions in exon 9 of calreticulin that cause a +1bp frameshift and a novel carboxy-terminal peptide in mutant calreticulin have been reported in 70% of JAK2/MPL-negative essential thrombocythemia (ET)and 56-88% of JAK2/MPL-negative primary myelofibrosis(PMF). In addition, CALR mutations have been reported in approximately 10% of patients with myelodysplasia, including JAK2/MPL-negative refractory anemia with ring sideroblasts (RARS-T) where it may co-occur with mutations in SF3B1. In ET, PMF, and RARS-T, calreticulin mutations appear to be mutually exclusive of mutations in JAK2 or MPL. The CALR mutations lead to loss of the endoplasmic reticulum retention motif (KDEL) sequence in the carboxy-terminal portion of mutant CALR. Calreticulin mutations appear to be absent in polycythemia vera, acute myeloid leukemia, chronic myeloid leukemia, systemic mastocytosis, lymphoid malignancies and are rare in atypical chronic myeloid leukemia and chronic myelomonocytic leukemia. The most common 52bp deletion mutation (Type 1) in CALR has been shown to lead to cytokine-independent growth and activation of STAT5. Type 2 (5 bp insertion) mutations have also been described. This represents a potentially targettable pathway alteration. Patients with some types of mutant CALR may show improved survival and lower risk of thrombosis compared to patients with mutant JAK2, according to some, but not all studies.

Citations
  1. Klampfl T, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369(25):2379-90
  2. Nangalia J, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369(25):2391-405
  3. Tefferi A, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014;28(7):1472-7
  4. Tefferi A, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014;28(7):1494-500
  5. Tefferi A, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia 2014;28(12):2300-3
  6. National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology. Myeloproliferative Neoplasms (Version 2.2018).
Last updated: 2018-11-12 20:41:00 UTC
PMKB Bot
  • Genes
  • Variants
  • Interpretations
  • Tumor Types
  • Primary Sites
  • Activity

Disclaimer: You assume full responsibility for all risks associated with using this PMKB website. The Englander Institute for Precision Medicine at Weill Cornell Medicine makes no guarantee of the comprehensiveness, reliability or accuracy of the information on this website and assumes no responsibility for errors in the information associated with this web site. Healthcare providers and patients must integrate all clinical and laboratory findings as well as information from a variety of sources before deciding on appropriate clinical care options.


When using PMKB, please cite: Huang et al., JAMIA 2017


HELP
User Guide
Video Tutorial
INFO
About
Latest
API
Twitter
CONTACT US
Contact

Englander Institute for Precision Medicine
© Weill Cornell Medicine | Version 1.7.2Privacy PolicyTerms of use